Statistical measurements of accuracy and precision reveal a test’s basic reliability. These terms, which describe sources of variability, are not interchangeable. A test method can be precise (reliably reproducible in what it measures) without being accurate (actually measuring what it is supposed to measure), or vice versa.
Statistical measurements of accuracy and precision reveal a test’s basic reliability. These terms, which describe sources of variability, are not interchangeable. A test method can be precise (reliably reproducible in what it measures) without being accurate (actually measuring what it is supposed to measure), or vice versa.
Accuracy
A test method is said to be accurate when it measures what it is supposed to measure. This means it is able to measure the true amount or concentration of a substance in a sample.
Picture a bull’s-eye target with a dart correctly hitting the centre ring and you see what an accurate test produces: the method is capable of hitting the intended target.
Precision
A test method is said to be precise when repeated determinations (analyses) on the same sample give similar results. When a test method is precise, the amount of random variation is small. The test method can be trusted because results are reliably reproduced time after time.
Picture a bull’s-eye target with darts all clustered together – but not in the centre ring – and you see what a precise but inaccurate method produces: the method can be counted on to reach the same target over and over again but the target may not be the one intended. When the method is both precise and accurate, bull’s-eye!
Although a test that is 100% accurate and 100% precise is the ideal, in reality, this is impossible. Tests, instruments, and laboratory personnel each introduce a small amount of variability. This amount of variability does not usually detract from the test’s value as it is taken into account.